首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13893篇
  免费   261篇
  国内免费   349篇
电工技术   247篇
综合类   290篇
化学工业   2028篇
金属工艺   492篇
机械仪表   997篇
建筑科学   280篇
矿业工程   151篇
能源动力   468篇
轻工业   667篇
水利工程   17篇
石油天然气   58篇
武器工业   45篇
无线电   3012篇
一般工业技术   3739篇
冶金工业   707篇
原子能技术   172篇
自动化技术   1133篇
  2024年   5篇
  2023年   122篇
  2022年   194篇
  2021年   236篇
  2020年   200篇
  2019年   182篇
  2018年   195篇
  2017年   279篇
  2016年   346篇
  2015年   386篇
  2014年   655篇
  2013年   621篇
  2012年   613篇
  2011年   1305篇
  2010年   791篇
  2009年   831篇
  2008年   810篇
  2007年   764篇
  2006年   813篇
  2005年   647篇
  2004年   561篇
  2003年   525篇
  2002年   492篇
  2001年   298篇
  2000年   289篇
  1999年   352篇
  1998年   319篇
  1997年   316篇
  1996年   321篇
  1995年   193篇
  1994年   187篇
  1993年   133篇
  1992年   122篇
  1991年   116篇
  1990年   90篇
  1989年   80篇
  1988年   49篇
  1987年   8篇
  1986年   10篇
  1985年   3篇
  1984年   7篇
  1983年   5篇
  1982年   8篇
  1981年   3篇
  1980年   3篇
  1976年   3篇
  1975年   5篇
  1974年   2篇
  1973年   5篇
  1955年   1篇
排序方式: 共有10000条查询结果,搜索用时 78 毫秒
31.
《Ceramics International》2022,48(17):24310-24318
We study the impact of yttrium oxide (Y2O3) on the optical properties of iron-doped borate glasses. A series of borate glasses, with a diluted and constant amount of Fe2O3, doped with various amounts of Y2O3 (labeled as BNaFeY-glasses) was prepared and studied. The impact of Y2O3 doping on the optical transitions of BNaFeY-glasses was studied by analyzing the optical absorption spectra. The presence of Fe cations, with their Fe3+ state, leads to the appearance of absorption in the ultraviolet region. Furthermore, the optical transmittance spectra proved the transparency of all BNaFeY-glasses. Moreover, the transmittance of the sample with the highest Y2O3 content is about 93 % within the visible range. Because of the diluted Fe content within BNaFeY-glasses, the five absorption bands of Fe are not observed. So, these bands are detected by magnifying the spectra within the visible region. These bands are labeled ?1, ?2, ?3, ?4 and ?5 at wavelengths 454.5, 518.4, 652.5, 707 and 808 nm respectively. These bands were used to calculate the crystal field splitting (10Dq) for all BNaFeY-glasses. The outstanding 10Dq increment with further Y2O3 doping was explained in terms of more interactions between Fe cations and their surroundings. On the other side, the shielding parameters were considered to examine the competence of these transparent glasses against nuclear radiation. We found that the sample doped with the highest amount of Y2O3 has the highest linear attenuation coefficient and the lowest half-value layer (HVL). From the HVL results, we need a thickness of 3.646 cm from the sample with 5 mol% of Y2O3 to get protection from 50% of the photons with energy of 0.662 MeV, and this thickness is increased to 5.137 cm when the energy is 1.333 MeV.  相似文献   
32.
PurposeTo investigate the relationship between the real contact lens imprint into the conjunctival tissue, observed by optical coherence tomography (OCT) and conjunctival staining and contact lens wearing comfort.Methods17 participants (mean age = 26.6 SD ± 3.6 years; 7 females) were fitted with three different contact lenses base curves of the same silicone hydrogel custom lens type (Visell 50; Hecht Contactlinsen, Au, Germany) in a randomised order. One lens was optimally fitted according to the manufacturer's recommendation, one fitted 0.4 mm flatter and one fitted 0.4 mm steeper. After 4 h of lens wear the contact lens edge in the area of the conjunctiva was imaged nasally and temporally using OCT (Optovue iVue SD-OCT). To correct the artefact due to optical distortion with OCT, the imprint of all worn lenses was measured on a glass plate afterwards. Conjunctival staining in the limbal region after 4 h of lens wear was classified using the CCLRU Grading Scale. Comfort scoring was based on visual analog scales from 0 (very poor) to 100 (excellent).ResultsThe mean conjunctival imprint of all contact lens edges was 32.0 ± 8.1 μm before and 7.3 ± 6.5 μm after distortion correction of the OCT images. The distortion corrected conjunctival imprint with the 0.4 mm steeper lens (11.5 ± 6.2 μm) was statistically significantly greater compared to the optimally fitted lens (6.5 ± 5.9 μm) (One-way ANOVA followed Tukey-test; p = 0.017) and greater compared to the 0.4 mm flatter lens (3.9 ± 5.3 μm) (p < 0.001). There was no statistically significant difference between the optimally fitted lens and the 0.4 mm flatter lens (p = 0.209). The nasally measured imprint (11.4 ± 9.0 μm) was significantly greater than the temporally measured (3.3 ± 7.6 μm) (p < 0.001). There was no statistically significant correlation between the amount of conjunctival imprint and the graded conjunctival staining (p = 0.346) or the wearer’s comfort (p = 0.735).ConclusionsContact lens edges imaged by OCT exhibited displacement artefacts. The observed conjunctival imprints are a combination of real conjunctival compression and artefacts. A deeper imprint of the contact lens into the conjunctiva caused by a steeper base curve was not related to clinically significant staining or changes in comfort after 4 h of lens wear. The observed differences between nasal and temporal imprint are likely to be caused by variations of conjunctival thickness and the shape of the underlying sclera.  相似文献   
33.
The compressive deformation of gas diffusion layer (GDL), which is highly nonlinear and related to the loading history, affects the performance of PEM fuel cell stacks. However, linear elastic models are widely used. In this study, a new nonlinear constitutive model is proposed to describe the compression properties. Macroscopic studies reveal that GDL has different mechanical properties during the first and repeated compression stages. Besides, the tangent modulus has a significant linear relationship with stress. The constitutive model can be rebuilt using the micro-mechanical theory of fiber assemblies by considering the bending of carbon fibers. Furthermore, a prediction method is proposed to describe cyclic compression behavior. The prediction results fit well with the test results with an average and maximum relative error of less than 5.30% and 18.13%, respectively. These conclusions are beneficial to the design of GDL with specific mechanical properties and the real-time analysis of PEM fuel cell.  相似文献   
34.
In 2018, Mishik Airazatovich Kazaryan received the highest award of the International Association for Alternative Energy and Ecology - Order of Antoine de Saint-Exupéry “For Improving the Quality of Life on the Planet of People” (IAAEE) on nominating the Award Committee of the Editorial Board of the International Scientific Journal for Alternative Energy and Ecology (ISJAEE). The award was given for his outstanding contribution to development of alternative energetics and ecology. M.A. Kazaryan's prominent contribution to the development of alternative energetics and ecology is based on his pioneering works in the field of development of methods for producing hydrogen as environmentally friendly safe fuel, as well as works in the field of processing organic compounds by various physical methods. As a part of joint research with colleagues from Lebedev Physical Institute of RAS (LPI), M.A. Kazaryan participated in creation of new methods for producing hydrogen from various chemical compounds. The method of conversion of liquid-phase compounds in plasma discharges under the influence of intensive ultrasonic cavitation occupies a special place. In the course of these works, it is shown that low-temperature plasma initiated in liquid-phase media in discharge between electrodes is able to effectively decompose hydrogen-containing molecules of organic compounds and form gaseous products where the part of hydrogen is more than 90%. Estimations of energy efficiency calculated taking into account hydrogen combustion heat and initial substances, as well as electricity costs, showed an efficiency level of about 60–70% in depending on the composition of the starting mixture. Another notable contribution of M.A. Kazaryan to the development of alternative energetics was the work on the optimization and justification of technological and structural parameters of energy discharge devices based on high-voltage pulse-periodic discharge for creating a reactor for plasmachemical processing of polymer wastes into hydrogen and other valuable compounds.  相似文献   
35.
研究市售的含有植物纤维或玉米淀粉的食品接触产品质量状况并对其安全性进行初步评价。参考标准要求并结合可能存在的质量安全隐患,从傅里叶变换红外(FTIR)材质分析、总迁移量、重金属(以Pb计)、脱色试验、五氯苯酚特定迁移量及砷、镉、铬、铅含量等维度对含有植物纤维或玉米淀粉的食品接触产品进行研究。35批次样品中有2批次塑料主体材质为密胺,2批次塑料主体材质为聚乳酸,31批次塑料主体材质均为聚丙烯;35批次样品的重金属(以Pb计)、脱色试验、五氯苯酚特定迁移量等项目均符合所参照标准的要求;35批次样品均检出至少含2种重金属,有4批次一次性淀粉餐具总迁移量超标。从检验结果可知,市面上销售的含有植物纤维或玉米淀粉的食品接触产品存在总迁移量超标及样品含重金属的情况,说明市场上该类产品确实存在一定的潜在风险。  相似文献   
36.
In the recent past, layered zinc-based vanadium spinel oxides (ZnVOs) have shown an intriguing way to accomplish the challenges of energy conversion, storage, and utilization issues. Here, through first-principles calculations, a comprehensive study has been carried out to investigate the AV2M (where A = Zn, Zn2, Zn3, Zn4, and M = O4, O6, O7, O8, O9 respectively) electronic, photocatalytic, and optical properties. Formation energies with a negative sign express that the final compounds from the pure elements are possible and cohesive energies revealed that compounds are energetically stable. Spin-polarized calculations are also taken into account for better approximation of the electronic properties (band structure and density of states). All layered structures show indirect bandgap for spin-up calculations in range 0.3 eV–2.4 eV, while spin-down calculations show mix trends in range 2.3 eV–3.50 eV. An appropriate band edge with large enough kinetic over-potentials of the oxygen evolution reaction (ΔEV ≥ 1.244 eV) makes them potential candidates as photoanode for water splitting. ZnV2O4 is more suitable for OER as it has small kinetic overpotential as compared to the oxidation potential of water. Interestingly, all ZnVOs display a dramatically large coefficient (~105 cm−1) for optical absorption. Photogenerated electrons and holes on the layered zinc-based vanadium spinel oxide surfaces could make these spinel oxides promising materials for photocatalytic water splitting and solar energy conversion.  相似文献   
37.
In this study, the lattice Boltzmann method was used to simulate the three-dimensional intrusion process of liquid water in the gas diffusion layer (GDL) of a polymer electrolyte membrane fuel cell (PEMFC). The GDL was reconstructed by the stochastic method and used to investigate fiber orientation's influence on liquid water transport in the GDL of a PEMFC. The fiber orientation can be described by the angle between a single fiber and the in-plane direction; three different samples were simulated for three different fiber orientation ranges. The simulated permeability correlated well with the anisotropic characteristics of reconstructed carbon papers. It was concluded that the fiber orientation had a significant effect on the liquid invasion pattern in the GDL by changing the pore shape and distribution of the GDL. The results indicated that the stochastically reconstructed GDL, taking into account the fiber orientation, better demonstrates the mass transport properties of the GDL.  相似文献   
38.
In this study, transparent LaErZr2O7 ceramic with high excess La and Er contents (nominally La1.28Er1.28Zr2O7.84) was successfully prepared by vacuum sintering at 1850?°C for 6?h using nanosized powder. The XRD, SEM, EDX and TEM results reveal that the single pyrochlore phase in the powder sample transforms to the coexistence of La-rich pyrochlore phase and Er-rich defect fluorite phase after high temperature sintering. The high excess amounts of La and Er favor the formation of pyrochlore structure. Despite the coexistence of two phases, the sample with 1?mm thickness shows excellent in-line transmittance in the visible to mid-infrared region (as high as 81% at 1100?nm). The upconversion and infrared emission under 980?nm exciting were measured and discussed as well.  相似文献   
39.
The distribution of fibers in the composite (which takes into account both their locations and orientations) is one of the important factors that affect the mechanical properties of FRCs. However, this parameter depends on various factors during composite fabrication, and controlling the distribution of fibers in the produced material represents a significant challenge. In this study, the applicability of three-dimensional (3D) printing technique for controlling fiber distributions was evaluated. The fibers fabricated using a 3D printer were placed inside a mold to produce cementitious composites. Three-point bending tests were conducted and the results of the experiment were discussed.  相似文献   
40.
A techno‐economic analysis for four different types of biogas plant realizations was performed, including one biogas biorefinery concept. For each concept detail, a process flow diagram was created. Mass and energy balances were estimated. The net present value and payback were calculated for each concept for a better feasibility understanding. The results showed that with the used expensive substrate, namely, wheat straw, the obtained paybacks appeared to be more than 100 years. Sensitivity analysis was done for the price range of a substrate. Critical factors were defined to improve feasibility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号